Cloning, sequencing, and disruption of the Bacillus subtilis psd gene coding for phosphatidylserine decarboxylase.
نویسندگان
چکیده
The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456-7461, 1994). Introduction of a plasmid containing the psd gene into temperature-sensitive Escherichia coli psd-2 mutant cells allowed growth at otherwise restrictive temperature. Phosphatidylserine was not detected in the psd-2 mutant cells harboring the plasmid; it accumulated in the mutant up to 29% of the total phospholipids without the plasmid. An enzyme activity that catalyzes decarboxylation of 14C-labeled phosphatidylserine to form phosphatidylethanolamine was detected in E. coli psd-2 cells harboring a Bacillus psd plasmid. E. coli cells harboring the psd plasmid, the expression of which was under the control of the T7phi10 promoter, produced proteins of 32 and 29 kDa upon induction. A pulse-labeling experiment suggested that the 32-kDa protein is the primary translation product and is processed into the 29-kDa protein. The psd gene, together with pss, was located by Southern hybridization to the 238- to 306-kb SfiI-NotI fragment of the chromosome. A B. subtilis strain harboring an interrupted psd allele, psd1::neo, was constructed. The null psd mutant contained no phosphatidylethanolamine and accumulated phosphatidylserine. It grew well without supplementation of divalent cations which are essential for the E. coli pssA null mutant lacking phosphatidylethanolamine. In both the B. subtilis null pss and psd mutants, glucosyldiacylglycerol content increased two- to fourfold. The results suggest that the lack of phosphatidylethanolamine in the B. subtilis membrane may be compensated for by the increases in the contents of glucosyldiacylglycerols by an unknown mechanism.
منابع مشابه
Partial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain
Background: Gamma -aminobutyric acid (GABA), a non-protein amino acid acts as an inhibitory neurotransmitter in the central nervous system of mammalians. The glutamate decarboxylase (GAD) is responsible for the conversion of L-glutamate to GABA. The human brain has two isoforms of this enzyme, GAD65 and GAD67 that differ in molecular weight, amino acid sequence, antigenicity, cellular location ...
متن کاملMOLECULAR CLONING AND EVALUATION OF WILD PROMOTER IN EXPRESSION OF BACILLUS SPHAERICUS PHENYLALANINE DEHYDROGENASE GENE IN BACILLUS SUBTILIS CELLS
To evaluate the role of wild promoter of L-phenylalanine dehydrogenase (PheDH) gene, referred to as pdh, from Bacillus sphaericus in expression, cloning of pdh gene in Bacillus subtilis was performed. The whole pdh gene was cloned in pHY300PLK shuttle vector and amplified, construct (pHYDH) then transformed in B. subtilis ISW1214 and E. coli JM109. The pdh endogenous promoter presented no effec...
متن کاملCloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed ...
متن کاملCloning and Enhanced Expression of an Extracellular Alkaline Protease from a Soil Isolate of Bacillus clausii in Bacillus subtilis
in the detergent industry. In this study, the extracellular alkaline serine protease gene, aprE, from Bacillusclausii was amplified by PCR and further cloned and expressed in B. subtilis WB600 using the pWB980 expression vector. Protease activity of the recombinant B. subtilis WB600 harboring the plasmid pWB980/aprEreached up to 1020 U/ml, approximately 3-folds higher than the nativ...
متن کاملCloning of the Gene Encoding M2e of Influenza Virus in B. subtilis
Background and Aims: The ectodomain of matrix protein of influenza virus is a weak immunogen that is highly conserved among all subtypes of influenza A virus. Tandem repeats of these genes along with linker were used to enhance immunogenicity of M2e protein and so it can be served as a universal vaccine in both humans and livestock. Materials and Methods: In this study, the sequences of extra-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 1 شماره
صفحات -
تاریخ انتشار 1998